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Babylonian Shadow-Length Schemes:
Between Mathematics and

Astronomy

John Steele*

Abstract

A simple mathematical scheme to represent the variation in the
length of the shadow cast by a vertical gnomon at different times
of day and in different months of the year is presented in the early
astronomical compendium MUL.APIN. A small number of texts
composed in the Late Babylonian period investigate and expand this
scheme. These texts have previously been studied and understood
as part of Babylonian astronomy. In this article, I suggest that
two of these later texts can be better understood as mathematical
texts. As such they provide evidence for the influence of astronomy
on Late Babylonian mathematics, either or both as the context for
simple mathematical problems and/or as a topic of mathematical
investigation.
Key-words: astronomy; gnomon; scholarly interaction;
mathematics; shadows

Esquemas babilónicos de longitud de la sombra: entre las

matemáticas y la astronomı́a

Resumen

Un simple esquema matemático para representar la variación en la
longitud de la sombra proyectada por un gnomon vertical en distintos
momentos del d́ıa y en diversos meses del año se presenta en el
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compendio astronómico MUL.APIN. Un pequeño número de textos
compuestos en el peŕıodo neobabilónico investigan y expanden este
esquema. Estos textos han sido previamente estudiados y entendidos
como parte de la astronomı́a babilónica. En este art́ıculo sugiero
que dos de estos textos tard́ıos pueden ser mejor entendidos como
textos matemáticos. Como tales, informan sobre la influencia de
la astronomı́a en las matemáticas neobabilónicas, ya sea como
contexto para simples problemas matemáticos y/o como argumento
de investigación matemática.
Palabras clave: astronomı́a; gnomon; interacción cient́ıfica;
matemáticas; sombra

1 Introduction

Embedded within Babylonian astronomical practice is a body of
mathematical knowledge and techniques of calculation which draw upon,
and sometimes expand upon, existing mathematical traditions, including
systems of metrology, simple arithmetic operations, and a fluency in working
with tables and the functions which underlie their construction. This
reliance of astronomy upon mathematics extends to every type of astronomy
including the observation of celestial phenomena, the description of the
behaviour of the sun, moon, and other bodies in the sky using mathematical
schemes, and the prediction of future astronomical phenomena from past
observations, as well as, most obviously, the various systems of mathematical
astronomy which calculate astronomical phenomena using mathematical
functions without the necessity of regular empirical input1. The influence
of astronomy on Babylonian mathematics is harder to pin down, however.
The so-called Hilprecht Text, a text known from one Middle Assyrian
and two Neo-Assyrian copies (Oelsner 2005–06), uses distances between
stars as the context for a mathematical problem (Rochberg-Halton 1983),
and Huber (1957: 279–281) has suggested that one problem on AO 6484,
a mathematical problem text from Seleucid Uruk, might have had an
application in the planetary systems of mathematical astronomy, but these
are isolated examples found among a very large corpus of mathematical

1For a comparison of mathematical methods and terminology found in Old Babylonian
mathematics, Late Babylonian mathematics, and Late Babylonian mathematical
astronomy, see Ossendrijver (2012: 26–27). For a detailed discussion of one particular
example, the use of calculations using a trapezoid to compute Jupiter’s motion and its
mathematical context, see Ossendrijver (2018).
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texts. Further direct evidence for astronomy providing either the setting
for mathematical problems or as the context for developments within
mathematics is scarce.

In this paper, I point to another possible case of the presence of
astronomy within a mathematical context. Several cuneiform texts contain
schemes relating the length of shadow cast by a vertical gnomon to the time
of day on specific dates during the year (Steele 2013). It has long been
recognized that the foundation of these shadow-length schemes is a purely
mathematical reciprocal relationship between the length of the shadow
and the time after sunrise (van der Waerden 1951: 34; Neugebauer 1975:
544–545; Steele 2013: 9). As I will show, the properties of this mathematical
relationship were explored in both astronomical and mathematical texts.

2 Late Babylonian mathematical and

astronomical texts

Roughly five thousand cuneiform tablets from first millennium BC Babylonia
contain astronomical or astrological texts. These texts include several large
groups of tablets that are the product of ongoing astronomical practice, such
as the so-called Astronomical Diaries, which contain records of astronomical
observations and other material for half a year, the Goal-Year Texts, which
contain collections of observations to be used in the process of predicting
future astronomical phenomena, the Almanacs and Normal Star Almanacs,
which contain the resulting predictions for a given year, and the Synodic
Tables of mathematical astronomy which contain calculated astronomical
data produced by implementing purely mathematical algorithms without
regular empirical input; reference texts such as star lists and procedure
texts explaining how to make astronomical predictions; and a variety of
other texts, many of which appear to be one-off compositions. In addition, a
significant number of tablets contain astrological texts, including horoscopes,
which contain astronomical data for the birth of an individual, and texts
stating astrological associations between, for example, the signs of the zodiac
and medical ingredients, geographical regions, personal characteristics, and
the potential length of an individual’s life. Finally, we find copies of
earlier standard works of astronomy and astrology, such as the astronomical
compendium MUL.APIN and the collection of celestial omens Enūma Anu
Enlil, and commentaries and other new compositions based upon these
works.
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The first millennium BC corpus of mathematical texts is somewhat
smaller than both the contemporary astronomical and astrological corpus
and the corpus of mathematical texts from the second millennium BC. The
mathematical corpus includes school texts which contain basic mathematical
and metrological material, metrological lists and tables, and what I will call
“advanced scholarly mathematics”, namely texts containing mathematical
problems and mathematical tables that are the result of complex, and often
seemingly pointless, calculations such as lists of the ninth powers of long
sexagesimal numbers2.

Tablets containing advanced scholarly mathematics and tablets
containing astronomical texts have been found together in several Late
Babylonian scholarly archives. For example, mathematical and astronomical
tablets have been recovered from both stages of occupation of the so-called
‘House of the āšipus’ in Uruk. This house was the home of two successive
families of āšipus: the Šanĝı-Ninurta family in the late fifth and early fourth
century BC and then, following a period of abandonment, the Ekur-zakir
family from the mid fourth to the late third century BC (Robson 2008:
224–240; Clancier 2009: 47–62; Proust and Steele 2019). Members of
both families owned and copied a wide range of scholarly tablets including
several astronomical, astrological, and mathematical tablets (Proust 2019;
Steele 2019). Similarly, mathematical and astronomical tablets were found
alongside one-another in the archives of the B̄ıt Rēš temple in Hellenistic
Uruk (Ossendrijver 2019). Thus, at least in the second half of the first
millennium BC, astronomy and mathematics were practiced by the same
individuals and in the same contexts. The tablets containing material

2Babylonian astronomy and mathematics made extensive use of the sexagesimal
place-value number system. In our decimal system, we have digits from 0 to 9. The
value of a digit depends upon its place in a number. Thus the digit 1 can be used to write
the number one, or when followed by a second digit such as 3 it has the meaning of one ten
+ three units or thirteen. Large numbers can be written by adding further digits to the
left. Decimal fractions can be indicated by adding digits to the right of the decimal point
marker. The sexagesimal place-value system operates on the same principle but with
‘digits’ from 0 to 59. It is conventional among those working on Babylonian astronomy
to transcribe sexagesimal numbers using commas to separate ‘digits’. In the Babylonian
sexagesimal system, however, the magnitude of a number is usually unspecified and there
is no equivalent of the decimal point. Thus any number can be multiplied by any positive
or negative factor of 60. For example, the sexagesimal number 1,30 can be understood as
one sixty plus thirty units (= 90), or one three-thousand-six-hundred plus 30 sixties (=
5400), or one unit plus thirty sixtieths (= 1 30/60th = 1.5), etc. If the absolute value of
a sexagesimal number is know from its context, this is indicated in translations (but not
transliterations) by a semicolon as the equivalent of the decimal point.
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relating to the length of the shadow cast by a gnomon, which are the focus
of this paper, were found in these same contexts and it therefore seems
certain that they were written by the same individuals who were writing
astronomical and mathematical texts.

Although astronomy and mathematics were practiced by the same
scholars, these scholars clearly distinguished these activities, following
different conventions for how to present their scholarship depending upon
the genre in which they were writing. One of the main ways of presenting
mathematics, for example, was through the form of what are referred to
as “problem texts” in modern scholarship. These texts, which have a long
history stretching back to the early second millennium BC, typically start
with some data and a question to which the answer is then given. Consider
the following example from a collection of problems on a tablet owned by
Anu-abu-utēr, who was active in the early second century BC3:

tam-
˘
h́ır -tu4 šá TA 1 GAM 1: 1 EN 10 GAM 10: 1,40 ki -i EN

ŠID-tú 1 GAM 20 : [1/3] DU-ma 20 : 10 GAM 40 : 2-TA
ŠU.MIN.MEŠ DU-ma 6,40 : 6,40 ù 20 7 7 GAM 55 DU-ma 6,25
: 6,25 ŠID-tú

Squares which are from 1 by 1 (is): 1 to 10 by 10 (is): 1,40.
What is the count? 1 by 20 (is): [1/3] and it is 0,20. 10 by 40
(is): 2/3 and it is 6,40. 6,40 and 0;20 (together are) 7. 7 by 55
and it is 6,25. 6,25 is the count.

In this problem, the reader is presented with a situation, a series of successive
squares which are from 1 by 1 to 10 by 10, and asked ‘what is the
count?’, meaning what is the sum of these squares. We are then presented
with a calculation in order to find the result, which is correctly given as
6,25. Consider now the following extract from a contemporary astronomical
procedure text4:

pMÚL.BABBARq TA 9 ALLA EN 9 GÍR.TAB 30 TAB šá al -la
9 GÍR.TAB DIRI A.pRÁq 1,7,[30 DU] pTAq 9 GÍR.TAB EN 2
MÁŠ 33,p45q TAB šá al -la 2 MÁŠ DIRI A.RÁ 1,p4q DU TA 2
MÁŠ EN 17 MÚL.MÚL 36 TAB pšá al -laq 17 MÚL.MÚL DIRI

3AO 6484 Obv. 3–5. See Neugebauer (1935–7: 96–107) for a detailed discussion of the
problems on this tablet.

4BM 33869 Obv. 1–4. See Ossendrijver (2012: 288–290) for a full edition and study
of this tablet.
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A.RÁ 56,15 DU TA 17 MÚL.MÚL EN 9 pALLAq 33,p45q [TAB]
pšá alq-la 9 ALLA DIRI A.RÁ 53,20 DU

Jupiter: From 9 Cancer to 9 Scorpio add 30. That which exceeds
9 Scorpio multiply by 1;7,30. From 9 Scorpio to 2 Capricorn add
33;45. That which exceeds 2 Capricorn multiply by 1;4. From 2
Capricorn to 17 Taurus add 36. That which exceeds 17 Taurus
multiply by 0;56,15. From 17 Taurus to 9 Cancer add 33;45.
That which exceeds 9 Cancer multiply by 0;53,20.

This passage presents the necessary information to calculate the position
of Jupiter in the zodiac at one of its synodic phenomena (first visibility,
first station, acronychal rising, second station, or last visibility) from its
position in the zodiac the previous time it exhibited the same phenomenon.
In contrast to the mathematical problem text, rather than a question being
posed, a calculation to solve the question presented, and a statement of the
answer, in this astronomical procedure text we get a set of instructions
that allow the planet’s position the next time it exhibits a particular
synodic phenomenon to be calculated if we know its position at the same
phenomenon. Astronomical procedure texts are written in the form of
instructions. Similar to other instructional texts, such as the texts describing
how to make glass, the procedures are presented as a series of second-person
instructions (implicitly in the example just quoted, but explicitly in some
other astronomical procedure texts) and sometimes they are introduced by
the phrase “in order for you to make x” (x ana DÙ-ka), where x is what the
reader is being told what to compute5.

Thus, we have a clear difference in style between mathematical problem
texts and astronomical procedure texts. In the former, we have specific
questions introduced by the word mı̄nû “what”, written either syllabically
or using the logographs EN.NAM, EN, or, very occasionally in the late
period,

˘
HÉ.EN, usually followed by a concrete numerical calculation, which

serves to illustrate a mathematical problem. In astronomical texts, however,
we find generalized procedures introduced by the phrase “in order for you
to make”. The term mı̄nû only appears within (not introducing) procedures
as part of the way that a division is expressed. For example, in a procedure
text concerning Mars we find the following6:

5A similar phrase “you, in your making” (at-ta i -na e-ṕı -̌si -ka) appears in some
mathematical texts introducing the solution to a problem, but never, as far as I know, in
introducing the problem itself.

6BM 34676 Rev. 33’– 34 (Ossendrijver 2012: 232–233).
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šá AN 4,44 MU.MEŠ p2,13 xq IGI.MEŠ 2,31 BAL.MEŠ 15,6
KI DU mi -nu-ú A.RÁ 2,13 IGI.MEŠ lu-DU-ma lu-púq 15,6:
6,48,43,18,30 GAM 2,13 IGI.MEŠ DU-ma 15,6: 6 tu-pub?q-al
48,43,18,40 ana MURUB4-ú GAR-an

Concerning Mars: 4,44 years, 2,13 . . . appearances, 2,31
revolutions, the position proceeds by 15,6,0. What should I
multiply by 2,13 appearances so that it is 15,6,0?: You multiply
6,48;4318,30 by 2,13 appearances, it is 15,6,0.You subtract 6,0
(and) put down 48;43,18,0 for the middle one.

The procedure is concerned with finding the mean synodic arc between two
consecutive occurrences of one of the phenomena of Mars from the fact that
in 4,44 (= 284) years, Mars exhibits its synodic phenomena 2,13 (= 133)
times and has made 2,31 (= 151) circuits around the zodiac. The mean
synodic arc is simply the total distance moved by Mars, which is given by
2,31 multiplied by 360 UŠ (where 1 UŠ = 1 degree) which is 15,6,0 (= 54360),
divided by the number of occurrences of the phenomena, 2,13. Thus, the
mean synodic arc is equal to 15,6,0 divided by 2,13. It is in performing this
division where we encounter the word mı̄nû “what”: we are asked “what”
should be multiplied by 2,13 to give 15,6,0 and told that the answer is
6,48;43,18,30. This value is therefore the mean distances traveled by Mars
between successive occurrences of the phenomenon. Finally, we subtract 6,0
(= 360) from the result to eliminate complete circuits of the zodiac. Note
that within this procedure, the term mı̄nû “what” was not used to set up the
overall question – there is no statement asking “what is the mean synodic
arc?” – instead it is only used as part of a formulaic phrase when presenting
the division of one number by another.

3 The basis of Late Babylonian

shadow-length schemes

Underlying all Late Babylonian discussions of the length of the shadow
cast by a gnomon is the shadow-length scheme presented in the early
astronomical compendium MUL.APIN. This widely copied text, which was
composed sometime in the late second or the early first millennium BC,
contains a collection of star lists and mathematical schemes describing
astronomical phenomena including the variation in the length of day and
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night across the year, the duration of visibility of the moon on each day
of a month, as well as descriptions of the synodic cycles of the planets,
intercalation rules, and a short collection of celestial omens (Hunger and
Steele 2019). MUL.APIN was a well know and widely read composition
during the Late Babylonian period and formed the basis for a distinct type
of astronomy which I name “schematic astronomy” and which flourished
alongside the observational and predictive astronomical traditions of the
late period (Steele 2021).

The shadow-length scheme in MUL.APIN is divided into four sections,
each of which contains statements of the length of day and night and the
time after sunrise at which the shadow cast by a vertical gnomon of one
cubit in height reaches specified lengths. The four sections concern the
15th of Months I, IV, VII, and X. These dates correspond to the dates
of the solstices and equinoxes in the schematic 360-day calendar in which
it is assumed that the year contains 12 months each of exactly 30-days.
This schematic calendar is used throughout MUL.APIN and the schematic
astronomy tradition. Immediately following the four sections containing
the shadow length data, the next two lines present a short supplementary
procedure which indicates how the scheme can be expanded to the other
months of the schematic calendar.

Let us examine the first section, which presents data for the 15th of
Month I, the date of the spring equinox in the schematic calendar7:

DIŠ ina itiBÁR UD.15.KAM 3 MA.NA EN.NUN u4-mi 3
MA.NA EN.NUN GE6 1 ina 1 KÙŠ GIŠ.MI 2 1/2 DANNA
u4-mu 2 ina 1 KÙŠ GIŠ.MI 1 DANNA 7 UŠ 30 NINDA u4-mu
3 ina 1 KÙŠ GIŠ.MI 2/3 DANNA 5 UŠ u4-mu

¶ Month I, the 15th day, 3 mina is the watch of the day, 3 mina
is the watch of the night. 1 cubit of shadow (at) 2 1/2 bēru
of daytime. 2 cubits of shadow (at) 1 bēru 7 UŠ 30 NINDA of
daytime. 3 cubits of shadow (at) 2/3 bēru 5 UŠ of daytime.

The section begins with the statement that on the 15th of Month I, day
and night both last for 3 mina. A mina is a unit of weight and is sometimes
used to express the duration of day or night, the implication being that this
is the weight of water flowing through a waterclock in the corresponding
length of time. The following lines give times using the units bēru, UŠ and

7MUL.APIN II ii 21–24 (Hunger and Steele 2019: 152–153).
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NINDA, where there are 30 UŠ in a bēru and 60 NINDA in an UŠ. These
are standard units of fixed-length time used in Babylonia. A full day (i.e.
daytime + night) lasts for 12 bēru or 360 UŠ. This being the case, 1 mina
must correspond to 2 bēru or 60 UŠ of time in the first line here. From other
parts of MUL.APIN, we know that the variation in the length of daylight
was expressed as a simple zigzag function with a period of twelve months
and with maximum and minimum values at the solstices of 4 mina or 240
UŠ and 2 mina or 120 UŠ8. The next three lines give the time after sunrise
at which the shadow is 1 cubit, 2 cubits, and 3 cubits in length respectively.
These time intervals after sunrise are given using the time units bēru and
UŠ. For simplicity, we can convert all of these time intervals into the unit
UŠ, as I have done in table 1. It will be apparent from this table that the
length of the shadow multiplied by the time after sunrise is always equal to
1,15 (= 75).

Shadow length Time interval as written in text Time interval in UŠ
1 cubit 2 1/2 bēru 1,15
2 cubits 1 bēru 7 UŠ 30 NINDA 37;30
3 cubits 2/3 bēru 5 UŠ 25

Table 1: The shadow length data given in MUL.APIN for the spring equinox.

The next three sections contain similar entries for the dates of the
summer solstice (15th of Month IV), the autumnal equinox (15th of Month
VII), and the winter solstice (15th of Month X). As we would expect, the
data for the autumnal equinox is identical to that of the spring equinox just
discussed. For the two solstices, data for shadow lengths ranging from 1
to 10 cubits in 1 cubit intervals are given, with the exception of the case
of 7 cubits which is omitted for reasons which will become clear. In each
case, the length of shadow multiplied by the time after sunset is equal to a
constant. That constant is 1,0 (= 60) for the summer solstice, 1,15 (= 75)
again for the autumnal equinox, and 1,30 (= 90) for the winter solstice. No
data is given for 7 cubits because 7 does not have a terminating reciprocal
in base 60, and so the time when the shadow reaches 7 cubits cannot be
expressed precisely using the units bēru, UŠ and NINDA.

The short procedure in the lines following the scheme allows it to be
extended to all months of the year and to all shadow lengths between 1

8Note that this ratio of longest to shortest day of 240 UŠ : 120 UŠ = 2 : 1 is very
inaccurate for the latitude of Babylon.
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and 10 cubits except, as mentioned, for 7 cubits. The extended scheme
is presented in table 2. It can be seen from inspecting this table that the
shadow length scheme is founded upon two basic mathematical rules. Entries
within a column, i.e. for the same month, follow the rule that the product
of the shadow length and the time after sunrise is equal to a constant c.
Entries along a row, i.e. for the same shadow length, follow simple zigzag
functions with a period of 12 months.

Month I Month II Month III Month IV Month V Month VI Month VII Month VIII Month IX Month X Month XI Month XII

c 1,15 1,10 1,5 1,0 1,5 1,10 1,15 1,20 1,25 1,30 1,25 1,20

1 cubit 1,15 1,10 1,5 1,0 1,5 1,10 1,15 1,20 1,25 1,30 1,25 1,20
2 cubit 37;30 35 32.30 30 32.30 35 37;30 40 42;30 45 42;30 40
3 cubit 25 23;20 21;40 20 21;40 23;20 25 26;40 28;20 30 28;20 26;40
4 cubit 18;45 17;30 16;15 15 16;15 17;30 18;45 20 21;15 22;30 21;15 20
5 cubit 15 14 13 12 13 14 15 16 17 18 17 16
6 cubit 12;30 11;40 10;50 10 10;50 11;40 12;30 13;20 14;10 15 14;10 13;20
8 cubit 9;22,30 8;45 8;7,30 7;30 8;7,30 8;45 9;22,30 10 10;37,30 11;15 10;37,30 10
9 cubit 8;20 7;46,40 7;13,20 6;40 7;13,20 7;46,40 8;20 8;53,20 9;26,40 10 9;26,40 8;53,20
10 cubit 7;30 7 6;30 6 6;30 7 7;30 8 8;30 9 8;30 8

Table 2: Reconstruction of the complete MUL.APIN shadow length scheme.
The value c corresponds to the constant value of the product of the shadow
length and the time after sunrise for the given month. Numbers are written
here in sexagesimal place value notation.

The mathematical nature of the shadow-length data in MUL.APIN has
been noted already by van der Waerden (1951: 34), Neugebauer (1975:
544–545), and others. In addition to the two mathematical rules which form
the basis of the scheme, its mathematical character is apparent from the
fact that an entry for a 1 cubit shadow at the winter solstice is included.
According to the scheme, the shadow will be 1 cubit in length at 1,30 UŠ
(= 90 UŠ) after sunrise at the winter solstice. However, it is assumed in
MUL.APIN that the length of daylight at the winter solstice is equal 2,0
UŠ (= 120 US); thus, 1,30 UŠ after sunrise would put us in the afternoon
when the shadow is starting to get longer again. As the length of daylight
at the winter solstice is 2,0 UŠ, the time 1,30 UŠ after sunrise is equal to
30 UŠ before sunset on that day. Since the changing length of the shadow
is symmetrical around midday, the shadow length at 30 UŠ before sunset is
equal to that at 30 UŠ after sunrise, and so according to this scheme for the
winter solstice the shadow will be 3 cubits in length. At noon, the shadow
will reach its shortest length of 1 1/2 cubits. The inclusion of the entry for 1
cubit can therefore only be explained by a desire to fill out the mathematical
scheme to 1 cubit in parallel with the entries for the other months.
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It is worth noting that despite its purely mathematical nature,
the MUL.APIN shadow length scheme is on the whole a reasonable
approximation to reality (Steele 2013: 9–10). However, it is not a scheme
that would be very useful in practice. Rather than give the length of shadow
at given time intervals during the day, the scheme does the opposite: it gives
the time after sunrise when the shadow reaches lengths given in 1 cubit
intervals (with the exception of 7 cubits). However, as can easily be seen in
table 2, the shadow length changes very quickly near sunrise but very slowly
close to midday. For example, at the summer solstice, it takes 30 UŠ (= 2
hours) for the shadow length to increase from 1 cubit to 2 cubits, but only
0;40 UŠ (= 2.66 minutes) to increase from 9 cubits to 10 cubits. Indeed, the
time interval between a shadow of 1 cubit and of 2 cubits is always longer
than that between 2 cubits and 10 cubits. Thus, the shadow length changes
too slowly near midday and too quickly shortly after sunrise or before sunset
to be useful for determining the time. Furthermore, the scheme as presented
is backwards to what we would expect for time measurement: it starts with
the shortest shadow, which is close to noon, the gives data for shadow lengths
that corresponds to times progressively earlier in the day.

How should we understand this scheme, therefore? Neugebauer noted a
similarity between the scheme and Old Babylonian reciprocal tables, writing
that “The arithmetical structure of this table reflects the arrangement of the
Old Babylonian tables of reciprocals – note the omission of the “irregular”
number s = 7” (Neugebauer 1975: 544). It should be remarked, however,
that what Neugebauer is comparing with the reciprocal tables is something
similar to my table 2, in which the time after sunrise is given as a sexagesimal
number. Whilst there is a mathematical relationship between the scheme
and reciprocals, there is no direct similarity between the passages given in
MUL.APIN, which are written as prose statements rather than in tabular
form and which present quantities with units, and reciprocal tables, which
operate purely with sexagesimal numbers. Thus, despite its mathematical
nature, the shadow-length scheme in MUL.APIN does not read like a
mathematical text. Rather, as is the case elsewhere in MUL.APIN and in
other texts of schematic astronomy, simple mathematical tools have been
applied to creating a numerical scheme representing the variation of an
astronomical quantity, and the scheme is presented using the format and
language of astronomical rather than mathematical texts.
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4 Shadow-length schemes in Late

Babylonian texts

I know of four tablets from the Late Babylonian period which expand upon
or otherwise refer to the shadow-length scheme presented in MUL.APIN.
Two of these texts are clearly astronomical. The first, BM 29371 (Brown,
Fermor and Walker 1999/2000: 144–148; Hunger 1999: 134–135; Steele 2013:
28–32), was copied by Nabû-apla-iddin of the Ešguzi-mansum family, who
was active in Borsippa during the mid to late 6th century BC (Waerzeggers
2012: 296). It contains an expansion of the MUL.APIN scheme to present
the length of the shadow at 1 2/3 bēru after sunrise for every fifth day
in the schematic calendar. This length of shadow follows a simple zigzag
function with minimum 1;12 cubits and maximum 1;48 cubits, which is in
agreement with the underlying principles of the MUL.APIN scheme. The
layout of the tablet emphasises the fact that both the length of daylight and
the behaviour of the shadow are symmetrical about the summer solstice:
each line of the tablet gives two sets of identical data for the weight of water
in a waterclock corresponding to the length of day and the length of the
shadow at 1 2/3 bēru after sunrise for two dates centred on the summer
solstice (Steele 2013: 28–32). The second tablet, BM 33564 (Steele 2013:
32–36), is a fragment of an astronomical procedure text. It was written by
a member of the Mušēzib family (almost certainly Marduk-̌sapik-zēri, who
was active in the early third century BC (Oelsner 2000)). Unfortunately, the
tablet is badly damaged and its contents cannot be fully understood, but
enough is preserved to see that the topic of the first section is the change
in the length of the shadow and the length of daylight between the summer
and winter solstices, and the second section deals with the length of daylight
and the motion of the sun through the zodiac. The layout, terminology, and
content of both texts put them firmly within the genre of astronomy.

The two remaining texts, BM 35369+45721 and SpTU IV 172, however,
do not fit so clearly within the context of astronomy. Indeed, the
shadow-length material on SpTU IV 172 appears at the end of a metrological
table, and, as I will discuss, the style and language of BM 35369+45721
displays more similarities with mathematical problem texts than with
astronomical texts. Let us consider each text in detail.
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4.1 BM 35369+45721

BM 35369+45721 is a substantial fragment of a cuneiform tablet. The
tablet, which is most likely from Babylon, cannot be dated any more
precisely than to the Late Babylonian period. In Steele (2013: 14–26) I
edited and discussed BM 457219. However, my discussion was marred by
confusion over the reading of the signs

˘
HÉ.EN as

˘
HÉ.GÁL10. In addition,

during a visit to the British Museum in December 2019 I identified BM
35369 as part of the same tablet11. I therefore present here a new edition
of the tablet with the new join before discussing its content below.

Obv.

1’ [. . . ] x [. . . ]

2’ pDIŠ ina itiAPINq šá 1 DANNA 10 pUŠ u4-muq [
˘
HÉ.EN GIŠ.MI . . . ]

3’ DIŠ ina itiGAN šá 1 DANNA 12 UŠ 30 pu4-muq
˘
H[É.EN GIŠ.MI . . . ]

4’ 42,30 A-RÁ 24 DU-ma 17 1,25 A-R[Á . . . ]

5’ DIŠ ina itiAB šá 1 DANNA
˘
HÉ.EN GIŠ.MI IGI? 2? 5 [. . . ]

6’ DIŠ ina itiŠU šá 4 DANNA u4-mu
˘
HÉ.EN GIŠ.MI 1 pina 1 NIM-maq

[. . . ]

7’ pDIŠq ina itiIZI šá 3 2/3 DANNA u4-mu
˘
HÉ.EN GIŠ.MI 50 ina 1,5

pNIM-ma 15 ZALq [3 SI GIŠ.MI . . . ]

8’ [DIŠ] ina itiKIN šá 2/3 (error for: 3) 1/3 DANNA u4-mu
˘
HÉ.EN GIŠ.MI

40 pina 1,10 NIM-maq 30 ZAL 6 [SI GIŠ.MI . . . ]

9My discussion was subsequently summarized and discussed by Friberg and Al-Rawi
(2016: 121).

10The excursus on p. 20 of Steele (2013) discussing the possible meaning of
˘
HÉ.GÁL,

where I wrongly dismiss the more likely reading
˘
HÉ.EN on the basis of it being an

unattested logographic combination, can now be ignored. I thank Matthew Rutz for first
pointing out to me the occasional use of

˘
HÉ.EN in Late Babylonian mathematical texts.

11Unfortunately, I was not able to check the physical join at that time. On 16 January
2021 Jeanette Fincke informed me that she had independently identified the likely join
of the same two tablets from photographs and I thank her for informing me of this. In
November 2021 I was able to confirm the physical join of the two pieces at the British
Museum.
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9’ [DIŠ] ina itiDU6 šá 3 DANNA u4-mu
˘
HÉ.EN GIŠ.MI 30 ina 1,15 NIM-ma

45 ZAL p9q [SI GIŠ.MI . . . ]

10’ [DIŠ ina it]iAPIN 2 2/3 DANNA u4-mu
˘
HÉ.EN GIŠ.MI 20 ina 1,20

NIM-ma 1 ZAL p1 KÙŠ GIŠq.[MI . . . ]

11’ [DIŠ ina i]tiGAN 2 1/3 DANNA u4-mu
˘
HÉ.EN GIŠ.MI 10 ina 1,25

NIM-ma 1,15 ZAL 1 KÙŠ 3 [SI GIŠ.MI . . . ]

12’ [DIŠ ina] itiAB 2 DANNA u4-mu
˘
HÉ.EN GIŠ.MI 1,30 KÙŠ GIM KA 1

KÙŠ 6 SI GIŠ.M[I . . . ]

13’ [DIŠ ina itiŠU U]D-15-KAM 1 KÙŠ GIŠ.MI 2 DANNA u4-mu 21 1 KÙŠ
1 ŠE GIŠ.MI 2 KASKAL UD.27 p1 KÙŠ 2q [ŠE]

14’ [DIŠ ina itiIZI] pUD.3q.KAM 1 KÙŠ 3 ŠE GIŠ.MI 2 DANNA u4-mu
[UD.9.K]AM 1 KÙŠ 4 pŠE GIŠq.MI

15’ [2 DANNA u4]-mu UD.15.KAM 1 KÙŠ 1 SI GIŠ.MI 2 DA[N]NA
UD.21.KAM 1 KÙŠ 1 pSI? q 1 ŠE

16’ [2] DANNA u4-mu UD.p27.KAMq 1 KÙŠ 1 S[I] p2q ŠE GIŠ.MI 2 DANNA
pu4-muq

17’ [DIŠ ina itiKIN UD.3.KAM 1] pKÙŠq 2 SI 3 Š[E 2 DANN]A pu4-muq
UD.9.KAM 1 KÙŠ 1 pSIq 4 ŠE GIŠ.MI

18’ [2 DANNA u4-mu UD.15.KAM 1 KÙŠ 2 SI GIŠ.MI 2 DAN]NA u4-mu
[UD.21.KAM] pxq

19’ [. . . ] px xq [x x]

Rev.

1 [DIŠ ina itiDU6 UD.3.KAM 1 KÙŠ 2 SI 3 ŠE GIŠ.MI 2 DANNA u4]-mu
UD.9.[KAM 1 KÙŠ 2 SI 4 ŠE]

2 [GIŠ.MI 2 DANNA u4-mu . . . ] pGIŠq.MI 2 KASKAL.BU u4-mu

3 [. . . ] x [. . . UD.27].KAM 1 KÙŠ 3 SI 2 ŠE GIŠ.MI pxq

4 [DIŠ ina itiAPIN UD.3.KAM 1] KÙŠ 3? SI 3 ŠE GIŠ.M[I 2 DANNA] u4-mu
UD.9 1 KÙŠ 3 SI 4 ŠE
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5 [GIŠ.MI 2 DANNA u4]- pmuq UD.15.KAM 1 KÙŠ 4 SI GIŠ.M[I 2]
DANNA u4-mu UD.21.KAM

6 [1 KÙŠ 4 SI 1 ŠE GIŠ].MI 2 DANNA u4-mu UD.27.KAM 1 KÙŠ 4 SI p2q
ŠE GIŠ.MI 2 KASKAL

7 [DIŠ ina itiGAN UD.3.KAM 1 K]ÙŠ 4 SI 3 ŠE 2 DANNA u4-mu
UD.9.KAM [1 KÙŠ 4 SI 4 ŠE GIŠ.MI]

8 [2 DANNA u4-mu U]D.15.KAM 1 KÙŠ 5 SI 2 DANNA u4-mu
UD.21.KAM [1 KÙŠ 5 SI 1 ŠE GIŠ.MI]

9 2 DANNA u4-mu UD].27.KAM 1 KÙŠ 5? SI 2 ŠE GIŠ.MI p2 DANNAq
[u4-mu]

10 [DIŠ ina itiAB UD.3.KAM 1] KÙŠ 5 SI 3 ŠE GIŠ.MI 2 DANNA [u4-mu
UD.9.KAM 1 KÙŠ 5 SI 4 ŠE GIŠ.MI]

11 [2 DANNA u4]-mu UD.15.KAM 1 KÙŠ 6 SI x GIŠ.[MI . . . ]

12 [2 DANNA u4]-mu UD.p27.KAMq [. . . ]

13 [. . . x]+6? ŠE? GIM? UD.27?.KAM UD-10[+x-KAM . . . ]

14 [. . . ] UD.15.KAM UD.21.KAM x UD.9.KA[M . . . ]

15 [. . . ] GIM itiGAN? UD.27.KAM UD.10[+x.KAM . . . ]

16 [. . . ] UD.21.KAM GIM UD.9.KA[M . . . ]

17 [. . . ] GIM itiDU6
? UD.27.[KAM . . . ]

18 [. . . U]D.21.KAM GIM UD.9.[KAM. . . ]

19 [. . . ] x [. . . ]

Obv.

1’ [. . . ] ... [. . . ]

2’ ¶ In Month VIII at 1 bēru 10 UŠ of day [What is the shadow? . . . ]

3’ ¶ In Month IX at 1 bēru 12 UŠ 30 (NINDA) of day. Wh[at is the shadow?
. . . ]
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4’ 42;30 multiplied by 24 is 17. 1,25 multip[lied by. . . ]

5’ ¶ In Month X at 1 bēru. What is the shadow? ... 2,5 [. . . ]

6’ ¶ In Month IV at 4 bēru of day. What is the shadow? 1. Subtract it
from 1 and [. . . ]

7’ ¶ In Month V at 3 2/3 bēru of day. What is the shadow? 0;50 Subtract
it from 1;5 and 0;15 is delayed [3 fingers of shadow . . . ]

8’ [¶] In Month VI at 3 1/3 bēru of day. What is the shadow? 0;40. Subtract
it from 1;10 and 0;30 is delayed 6 [fingers of shadow . . . ]

9’ [¶] In Month VII at 3 bēru of day. What is the shadow? 0;30. Subtract
it from 1;15 and 0;45 is delayed 9 [fingers of shadow . . . ]

10’ [¶ In] Month VIII, 2 2/3 bēru of day. What is the shadow? 0;20. Subtract
it from 1;20 and 1;0 is delayed 1 cubit of shadow [. . . ]

11’ [¶ In] Month IX, 2 1/3 bēru of day. What is the shadow? 0;10. Subtract
it from 1;25 is 1;15 is delayed 1 cubit 3 [fingers of shadow . . . ]

12’ [¶ In] Month X, 2 bēru of day. What is the shadow? 1;30 cubits which
corresponds to 1 cubit 6 fingers of shad[ow . . . ]

13’ [¶ In Month IV,] 15th [d]ay 1 cubit of shadow at 2 bēru of day. 21<st
day> 1 cubit 1 barleycorn of shadow at 2 bēru. 27(th) day 1 cubit 2
barleycorn.

14’ [¶ In Month V,] 3rd day 1 cubit 3 barleycorn of shadow at 2 bēru of day.
[9th da]y 1 cubit barleycorn of shadow

15’ [at 2 bēru of d]ay. 15th day 1 cubit 1 finger of shadow at 2 bē[r ]u of
shadow. 21st day 1 cubit 1 finger 1 barleycorn

16’ [of shadow at] 2 bēru of day. 27th day 1 cubit 1 fin[ger] 2 barleycorn of
shadow at 2 bēru of day.

17’ [¶ In Month VI, 3rd day 1] cubit 2 fingers 2 barley[corn of shadow at 2
bē]ru of day. 9<th> day 1 cubit 1 finger 4 barleycorn of shadow

18’ [at 2 bēru of day. 15th day 1 cubit 2 fingers of shadow at 2 bē]ru of day.
[21st day]

19’ [. . . ] . . . [. . . ]
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Rev.

1 [¶ In Month VII, 3rd day 1 cubit 2 fingers 3 barleycorn of shadow at 2
bēru of d]ay. 9[th] day [1 cubit 2 fingers 4 barleycorn]

2 [of shadow at 2 bēru of day. 15th day 1 cubit 3 fingers] of shadow at 2
bēru of day

3 [. . . ] ... [. . . 27]th [day] 1 cubit 3 fingers of shadow . . .

4 [¶ In Month VIII, 3rd day, 1] cubit 3 fingers 3 barleycorn of shad[ow at 2
bēru] of day. 9<th> day 1 cubit 3 fingers 4 barleycorn

5 [of shadow at 2 bēru of d]ay. 15th day 1 cubit 4 fingers of shad[ow 2] bēru
of day. 21st day

6 [1 cubit 4 fingers 1 barleycorn of sha]dow at 2 bēru of day. 27th day 1
cubit 4 fingers 2 barleycorn of shadow at 2 bēru.

7 [¶ In Month IX, 3rd day, 1 cu]bit 4 fingers 3 barleycorn at 2 bēru of day.
9th day [1 cubit 4 fingers 4 barleycorn of shadow]

8 [at 2 bēru of day.] 15th [d]ay 1 cubit 5 fingers at 2 bēru of day. 21st day
[1 cubit 5 fingers 1 barleycorn of shadow]

9 [at 2 bēru of day.] 27th [day] 1 cubit 5 fingers 2 barleycorn of shadow at
2 bēru [of day]

10 [¶ In Month X, 3rd day, 1] cubit 5 fingers 3 barleycorn of shadow at 2
bēru [of day. 9th day 1 cubit 5 fingers 4 barleycorn of shadow]

11 [at 2 bēru of d]ay. 15th day 1 cubit 6 finger . . . sha[dow . . . ]

12 [2 bēru of d]ay. 27th day [. . . ]

13 [. . . ] . . . Month XII? corresponds to 27?th day [xth ] day [. . . ]

14 [. . . ] 15th day 21st day . . . 9th day [. . . ]

15 [. . . ] corresponds to Month IX? 27th day [xth] day [. . . ]

16 [. . . ] 21st day corresponds to 9th day [. . . ]

17 [. . . ] corresponds to Month VII 27[th] day [. . . ]
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18 [. . . ] 21st [d]ay corresponds to 9th day [. . . ]

19 [. . . ] . . . [. . . ]

The tablet can be understood as containing four parts: Obv. 1’–5’
(beginning of section lost), Obv. 6’–12’, Obv. 13’ – Rev. 12, and Rev.
13–18 (end of section lost). Each part is divided into several subsections by
horizontal rulings (note that no distinction is made between the rulings
marking the division into the four larger parts and those marking the
subsections on the tablet). When complete, the first three sections each
contained seven subsections. Each of these subsections concerns one month
in the calendar, beginning with Month IV and ending with Month X. In the
schematic calendar, the summer solstice is placed on the 15th of Month IV
and the winter solstice is on the 15th of Month X. Thus, within each of these
three parts of the text we run through the months from the summer solstice
to the winter solstice. The fourth and final part explains that the situation
is symmetrical for the other half of the year.

The first part, Obv. 1’–5’, is badly preserved but enough remains to
determine that we are asked to find the length of the shadow at given
moments after sunrise. The entries for Month VIII and IX specify that this
time is 1 bēru 10 UŠ and 1 bēru 12 UŠ 30 NINDA respectively. According to
the MUL.APIN shadow length scheme, both of these cases correspond to a
shadow length of 2 cubits. The entry for Month X gives the time as 1 bēru,
which would correspond to a shadow length of 3 cubits. It seems possible
that the scribe has made a mistake here and the time should have been 1
1/2 bēru (a simple error of omitting the sign for 1/2), which would also
correspond to a 2 cubit-length shadow. Unfortunately, the procedure for
calculating the shadow is damaged in each case. However, we can speculate
that it was something along the following lines. Recall that in MUL.APIN,
the time after sunrise multiplied by the length of the shadow is equal to a
constant (this constant is simply the time after sunrise when the shadow
equals 1 cubit according to the scheme). Thus, the shadow length can be
found from the time by dividing that constant by the time. In Mesopotamia,
division is typically carried out by taking the reciprocal of the divider and
then multiplying the result by the dividend. We seem to have a hint of this
at the end of the preserved part of Obv. 5’, concerning Month X, where
we read the sign IGI, which can indicate that reciprocal of a number is
to be found. Thus, the very simple procedure of taking a reciprocal and
then multiplying by the constant provides the required shadow length. This
simple procedure breaks down, however, in the case of Month IX. The time
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after sunrise 1 bēru 12 UŠ 30 NINDA is 42;30 UŠ and 42;30 is not a regular
sexagesimal number. Thus, we cannot simply take the reciprocal of the
time. Instead, either an approximation to the reciprocal must be calculated,
or else the length of the shadow must be determined in a different way. This
likely explains the fact that the entry for Month IX takes up two lines on
the tablet whereas those for Month VII and X fit on one line.

In the second part of the text, Obv. 6’–12’, we are again asked to find the
shadow from a stated time after sunrise. In this case, this time corresponds
to the moment of midday. The shadow is found by subtracting a number b
from a number c to give a result d (all in sexagesimal place value notation).
This result is named ZAL, almost certainly coming from the Akkadian verb
u
˘
h
˘
huru “to be late” which can be written using the logogram ZAL, and is

then converted into a quality in cubits and fingers where 1 cubit = 12 fingers
(a metrology which is specific to this text; see further the discussion of part 3
below). The numbers b and c can be understood as the time of midday after
sunrise minus 60 UŠ and the time after sunrise when the shadow reaches
1 cubit in length respectively (Steele 2013: 22). The resulting shadow
length differs from that implied by the MUL.APIN scheme (indeed, it is
considerably superior to it – see Steele (2013: 23)), but I cannot explain
the rationale behind the computation or what is meant by the term “is
delayed”12.

4.2 SpTU IV 172

The tablet SpTU IV 172 (W 23273), which was excavated from the so-called
‘house of the āšipus’ from Achaemenid Uruk, contains a copy of a list of
numbers associated with gods, a metrological table, and a short section on
shadows (Friberg and Al-Rawi 2016: 106–124; Proust 2019: 100–106). The
majority of the tablet is taken up with the metrological table. This table
presents metrologies for length (both rod and cubit metrologies are given),
area and weight. The two length metrologies are each presented twice, first
as sexagesimal numbers followed by length quantities with units, and then
in the opposite order of length quantities with units followed by sexagesimal
numbers. Immediately after the metrological tables is a catch-line for a
metrological table of capacities on another tablet. Below this, we find the
material on shadows, which implies that it was added to this tablet after the
copying of the metrological tables. Finally, the tablet ends with a colophon

12Friberg and Al-Rawi (2016: 121) dismiss this section as containing “nonsense
calculations and (an) incorrect counting of fingers”.
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which explains that the tablet was owned by Rı̄mūt-Anu, son of Šamaš-iddin,
descendent of Šanĝı-Ninurta. R̄ımūt-Anu was the owner of a number of
scholarly cuneiform tablets found in this house, including medical texts,
omen texts, and another mathematical tablet (Robson 2008: 232; Proust
2019: 94–96).

The shadow-length material copied at the end of the tablet was probably
divided into two sections, although damage to the middle of this material
has destroyed the horizontal ruling marking the section boundaries. The
text reads as follows13:

39 [. . . ] am-mat ŠU

40 [. . . ] KÙŠ IZI u SIG4 KI.MIN

41 [. . . KÙŠ KIN] u GU4 KI.MIN

42 [. . . KÙŠ DU6 u] p BÁR q KI.MIN

43 [. . . KÙŠ APIN u ŠE KI].MIN

44 [. . . KÙŠ GAN u ZÍZ KI.MIN]

45 [. . . KÙŠ AB]

46 [ŠU . . . GIŠ.MI ZAL-ra]

47 [IZI 15] pGIŠq.MI ZAL-ra

48 KIN 30 GIŠ.MI ZAL-ra

49 DU6 45 GIŠ.MI ZAL-ra

50 APIN 1 pGIŠq.MI ZAL-ra

51 GAN 1,15 GIŠ.MI ZAL-ra

52 AB 1,30 GIŠ.MI ZAL-ra

13SpTU IV 172 Rev. IX 39–52. The edition given here has one extra line in the break
between lines 43 and 46 than is shown in the copy published in SpTU IV or in my previous
edition published (Steele 2013: 26). The presence of this extra line, which is expected
from the content of the text, seems plausible based upon the photograph published by
Friberg and Al-Rawi (2016: 124), and is included in their edition without comment.
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39 [. . . ] cubit Month IV.

40 [. . . ] cubits Month V and Month III the same.

41 [. . . cubits Month VI] and Month II the same.

42 [. . . cubits Month VII and] Month I the same.

43 [. . . cubits Month VIII and Month XII the sa]me.

44 [. . . cubits Month IX and Month XI the same]

45 [. . . cubits Month X]

46 [Month IV . . . shadow is delayed.]

47 [Month V 15] shadow is delayed.

48 Month VI 30 shadow is delayed.

49 Month VII 45 shadow is delayed.

50 Month VIII 1 shadow is delayed.

51 Month IX 1,15 shadow is delayed.

52 Month X 1,30 shadow is delayed.

The first section apparently contained statements of the length of the
shadow for different months of the year. In accord with MUL.APIN and all
of the other shadow length schemes, the scheme is symmetrical around the
solstices in Months IV and X. Unfortunately, the numbers at the beginnings
of each line are lost. Two possibilities suggest themselves for restoring these
numbers. First, the numbers could be the length of the shadow at 60 UŠ (= 2
bēru) after sunrise, following the MUL.APIN scheme, which follow a simple
zigzag function from 1 cubit to 1;30 cubits. This number is also the constant
c in the relationship between the shadow length and the time after sunrise
in the MUL.APIN scheme (Steele 2013: 27). Alternatively, the numbers
could duplicate those in the second section, thus giving two versions of the
same material, similar to the sections of the metrological text dealing with
length metrologies earlier in the tablet (Friberg and Al-Rawi 2016: 120).
The second section presents the same numbers calculated in part 2 of BM
35369+45721, again designated by the obscure phrase “is delayed”. These
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numbers seem to be alternative lengths for the shadow at noon to those
implied by the MUL.APIN scheme (Steele 2013: 27–28).

Whatever the meaning and purpose of these shadow-length material on
this tablet, what is important for the present discussion is that this material
is found on a mathematical tablet presenting metrological tables, not an
astronomical tablet. SpTU IV 172, therefore, provides clear evidence of an
astronomical topic, the variation in the length of shadow over the course of
the year, in an explicitly mathematical context.

5 Shadow-length schemes: between

mathematics and astronomy

Although the variation in the length of the shadow cast by a gnomon is
essentially an astronomical problem, and a simple scheme representing this
variation is presented in MUL.APIN, probably the most widely copied and
read astronomical text within Mesopotamia, BM 35369+45721 and SpTU IV
172 show that during the Late Babylonian period, this astronomical problem
was also incorporated into mathematical texts. The scheme presented
in MUL.APIN is based upon two simple mathematical foundations: the
assumption that on any given date the length of the shadow multiplied by the
time after sunrise is equal to a constant, and that this constant, and therefore
also both the time after sunrise when the shadow reaches a given length and
length of the shadow at a given time, vary as simple zigzag functions. The
simplicity and the basic mathematical nature of these foundations of the
scheme may well have made it an ideal topic for mathematical investigation.

The context of scholarship during the Late Babylonian period – a
relatively small number of scholars, employed by the temples, and who
were active in many areas of learning – provided a suitable environment
for the interaction of different types of scholarship which had until then
remained largely separate. In particular, astronomical and astrological
ideas were incorporated into a wide range of other scholarly areas, such
as medicine, liver divination, ritual, and historical writing (Heeßel 2008;
Geller 2011, 2014; Krul 2019, Reynolds 2019). Given this context, we should
not be surprised that astronomy was also incorporated within mathematical
scholarship. On the contrary, what is perhaps surprising is that we do
not have more cases of astronomy providing the setting for mathematical
problems or for mathematical texts which investigate the mathematical
properties of functions employed within astronomy.
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Vorbereitung einer säkularen Naturwissenschaft und Medizin”, Sudhoffs

Archiv 95 (2): 158–169.

Geller, Markham J. (2014) Melothesia in Babylonia: Medicine, Magic,

and Astrology in the Ancient Near East. Berlin: De Gruyter.

Heeßel, Nils (2008) “Astrological Medicine in Babylonia”, in: Akasoy,

A.; Burnett, C. and Yoeli-Tlalim, R. (eds.), Astro-Medicine: Astrology and

Medicine, East and West, Micrologus’ Library 25. Firenze: SISMEL, pp.

1–16.
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